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Abstract

Motivated by an imaging proteomics study for Alzheimer's disease (AD), in this arti-

cle, we propose a mediation analysis approach with high-dimensional exposures and

high-dimensional mediators to integrate data collected from multiple platforms. The

proposed method combines principal component analysis with penalized least

squares estimation for a set of linear structural equation models. The former reduces

the dimensionality and produces uncorrelated linear combinations of the exposure

variables, whereas the latter achieves simultaneous path selection and effect estima-

tion while allowing the mediators to be correlated. Applying the method to the AD

data identifies numerous interesting protein peptides, brain regions, and protein–

structure–memory paths, which are in accordance with and also supplement existing

findings of AD research. Additional simulations further demonstrate the effective

empirical performance of the method.
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1 | INTRODUCTION

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder

and is characterized by progressive impairment of cognitive and bodily

functions and ultimate death. It is currently affecting over 5.8 million

American adults aged 65 years or older. Meanwhile, its prevalence

continues to grow and is projected to reach 13.8 million by 2050

(Alzheimer's Association, 2020). Multimodal technologies have trans-

formed AD research in recent years, by collecting different types of

data from the same group of subjects and enabling the investigation

of complex interrelated mechanisms underlying AD development.

Notable examples include multimodal neuroimaging studies of the

joint impact of brain structure and function on the disorders (Higgins,

Kundu, & Guo, 2018; Liu et al., 2015), and imaging genetics studies of

the impact of genetic variants on the brain then the disease outcome

(Nathoo et al., 2019), among others.

Our motivation is an imaging proteomics study, which is part of

the Alzheimer's Disease Neuroimaging Initiative (ADNI) that aims to

identify biomarkers for early detection and tracking of AD and to

assist the development of prevention and intervention strategies.

Amyloid-β is a microscopic brain protein fragment, denotes peptides

of 36–43 amino acids, and is part of a larger protein called amyloid

precursor protein. Tau is a group of microtubule-associated proteins

predominantly found in brain cells and performs the function of stabi-

lizing microtubules. Amyloid-β is the main component of amyloid

plaques, while tau is the main component of neurofibrillary tangles,
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both of which are commonly found in the brains of AD patients.

Models of AD pathophysiology hypothesize a temporal sequence, in

which accumulations of amyloid-β plaques and neurofibrillary tangles

disrupt cell-to-cell communications and destroy brain cells, leading to

brain structural atrophy in regions such as the hippocampus, and ulti-

mately a clinical decline in cognition (Mormino et al., 2009). However,

it remains unclear how these two proteins interact with each other

and with other proteins in the cerebrospinal fluid (CSF), and how

those proteins together subsequently affect brain atrophy and disease

progression. In our study, we aim to investigate simultaneously the

interrelations of multiple protein peptides in the CSF, along with mul-

tiple brain regions of the whole brain, and their impact on memory.

The problem can be formulated as a mediation analysis, where

the goal is to identify and explain the mechanism, or path, that under-

lies an observed relationship between an exposure and an outcome

variable, through the inclusion of an intermediate variable known as a

mediator. It decomposes the effect of exposure on the outcome into

a direct effect and an indirect effect, the latter of which indicates

whether the mediator is on a path from the exposure to the outcome.

In our multimodal AD study, the measurements of the amount of mul-

tiple protein peptides serve as the exposure variables, the volumetric

measurements of multiple brain regions serve as the potential media-

tors, and a composite memory score serves as the outcome. See sec-

tion 2 for more details about the study and the data. Our objective is

to identify paths from proteins to brain regional atrophies that lead to

memory decline.

Mediation analysis was first proposed with a single exposure and

a single mediator (Baron & Kenny, 1986). See VanderWeele (2016) for

a review of mediation analysis and many references therein. In our

setting, both the exposure variables and mediators are multivariate

and potentially high-dimensional. While there have been numerous

extensions of mediation analysis to account for multiple mediators

(see, e.g., Chén et al., 2017; Song et al., 2018; Zhao & Luo, 2022,

among many others), there have been very few works studying multi-

variate exposures, or both multivariate exposures and mediators.

Recently, Aung et al. (2020), Long, Irajizad, Doecke, Do, and

Ha (2020), and Zhang (2021) proposed new approaches for mediation

analysis of multivariate exposures and mediators. In particular,

Zhang (2021) developed two regularization procedures and applied

them to a mouse f2 dataset for diabetes, taking SNP genotypes as the

exposures, islet gene expressions as the mediators, and insulin level as

the outcome. However, they required the mediators to be indepen-

dent, which hardly holds in our setting, as different brain regions are

generally believed to influence each other. Aung et al. (2020) studied

environmental toxicants on pregnancy outcomes, taking toxicants as

the exposures, endogenous biomarkers such as inflammation and oxi-

dative stress as the mediators, and gestational age at delivery as the

outcome. A key strategy of their analysis was to reduce the exposure

dimension by creating environmental risk scores for a small number of

groups based on the domain knowledge. They showed that the

between-group correlation in the reduced exposures is negligible.

However, such prior domain knowledge may not always be available.

Long et al. (2020) proposed a general mediation framework to identify

proteins that mediate the effect of metabolic gene expressions on sur-

vival for a type of kidney cancer, taking mRNA levels as the expo-

sures, protein measures as the mediators, and survival time as the

outcome. Nevertheless, they implicitly required the dimensions of the

exposures and mediators cannot be too high, and thus their method is

not directly applicable to our setting, where the number of exposures

and mediators can both be potentially larger than the sample size.

In this article, we propose a mediation analysis approach, with

both high-dimensional exposures and high-dimensional mediators, for

multimodal data analysis. The method integrates principal components

analysis (PCA) with penalized least squares estimation for a set of lin-

ear structural equation models. The former reduces the dimensionality

and produces uncorrelated linear combinations of the exposure vari-

ables, whereas the latter achieves path selection and effect estimation

while allowing the multivariate mediators to be potentially correlated.

We apply this approach to the imaging proteomics study of AD to

integrate CSF proteomics, brain volumes, and a memory measure of

mild cognitive impairment (MCI) subjects in ADNI. We identify several

interesting protein peptides, brain regions, and protein–structure–

memory paths that are in accordance with and also supplement the

existing knowledge of AD. Additional simulations further demonstrate

the efficacy of the method. Similar to Aung et al. (2020), Long

et al. (2020), and Zhang (2021), our approach is among the first

attempts to conduct mediation analysis where both the exposures

and mediators are high-dimensional. But unlike the existing solutions,

we do not restrict the dimensionality or the correlation structures and

do not require additional domain knowledge of the exposures or

mediators. Moreover, although focusing on a multimodal neuroimag-

ing study in this article, our proposed method is equally applicable to

a wide range of multimodal data integration problems, for example,

the multi-omics data analysis (Richardson, Tseng, & Sun, 2016), and

the multimodal healthcare study (Cai, Wang, Li, & Liu, 2019). As such,

our proposal makes a useful addition to the general toolbox of both

mediation analysis and multimodal data integration.

The rest of the article is organized as follows. Section 2 intro-

duces the motivating imaging proteomics data of AD. Section 3 pre-

sents the proposed model and estimation approach. Section 4

analyzes the AD dataset, with a detailed discussion on the identified

protein peptides, brain regions, and path. Section 5 complements with

additional simulation results to demonstrate the empirical perfor-

mance of the method.

2 | AD IMAGING PROTEOMICS STUDY

While Alzheimer's disease is becoming a major public health challenge

as the population ages, there is no effective treatment for AD that is

capable of stopping or slowing the associated cognitive and neuronal

degradation. Therefore, understanding the disease pathology, identi-

fying biological markers, and finding early diagnosis and intervention

strategies are of critical importance (Alzheimer's Association, 2020).

Among numerous AD-related proteins in the CSF, amyloid-β and tau

are two major proteins that are consistently identified in the brains of
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AD patients, and their abnormal abundance generally indicates AD

pathology (Jagust, 2018). Even though there has been evidence

suggesting a pathological connection between amyloid-β deposition,

hippocampus atrophy, and memory decline (Mormino et al., 2009), it

remains largely unknown how amyloid-β and tau interact with each

other, how they interact with other proteins in the CSF, and how

these proteins together affect the downstream brain atrophy and cog-

nitive outcome. In our study, we aim to delineate the regulatory rela-

tionships among multiple CSF proteins, structural atrophy of the

whole brain, and cognitive behavior, and to identify important biologi-

cal paths.

The data used in our study are obtained from the Alzheimer's

Disease Neuroimaging Initiative (ADNI, adni.loni.usc.edu). The CSF

proteomics data were obtained using targeted liquid chromatography

multiple reaction monitoring mass spectrometry, which is a highly

specific, sensitive, and reproducible technique for quantifying

targeted proteins. A list of protein fragments, or peptides, was sent to

the detector. The samples then went through peak integration, out-

liers detection, normalization, quantification, and quality control using

test/re-test samples. This procedure results in the intensity measures

of 320 peptides that are annotated from 142 proteins. The brain

imaging data were obtained using anatomical magnetic resonance

imaging (MRI). Each image was first preprocessed following the stan-

dard pipeline, then mapped to an atlas consisting of 145 brain

regions-of-interest to extract the volumetric measures (Doshi

et al., 2016). The atlas used in the study spans the entire brain and

was actually built on multiple atlases. Individual atlases were first

warped to the target image using a nonlinear registration method,

followed by a spatially adaptive weighted voting strategy to fuse into

a final segmentation. Moreover, the volume of each brain region was

standardized by the total intracranial volume to account for variations

of individual brain size. The cognitive outcome is a composite mem-

ory score, ADNI-MEM, that involves a battery of neuropsychological

tests. In our study, we focus on 135 subjects diagnosed as mild cogni-

tive impairment (MCI) patients at recruitment. MCI is a prodromal

stage of AD, with a slight but noticeable and measurable decline in

cognitive abilities. A person with MCI is at an increased risk of devel-

oping AD or other dementia. Understanding the pathologic mecha-

nism underlying MCI provides important clues of onset of the

disorder as well as a useful guide for early diagnosis and intervention.

3 | MODEL AND METHOD

We first present the proposed model, then an estimation method inte-

grating principal components analysis and penalized estimation.

3.1 | Model

Suppose there are totally n subjects. Let Xi ¼ Xi1,…,Xirð ÞΤ �ℝr denote

the r-dimensional vector of exposure variables, Mi ¼ Mi1,…,Mip

� �Τ �ℝp

denote the p-dimensional vector of mediators, and Yi �ℝ denote the

univariate outcome variable, for subjects i¼1,…,n. In our imaging pro-

teomics study, Xi denotes the protein peptide measures with r¼320,

Mi denotes the brain volumetric measures with p¼145, Yi denotes

the memory score, and the sample size n¼135.

The first step of our method is to perform a principal components

analysis on Xi to produce uncorrelated composite exposures. If Xi fur-

ther follows a multivariate normal distribution, then the produced

composite exposures are independent. Let eXi ¼ eXi1,…,eXiq

� �Τ
�ℝq

denote the first q principal components. We then continue to model

the path relations among eXi,Mi and Yi via the following set of linear

structural equation models,

M ¼ eXαþϵ,
Y ¼ eXγþMβþη,

ð1Þ

where eX¼ eX1,…,eXn

� �Τ
�ℝn�q, M¼ M1,…,Mnð ÞΤ �ℝn�p, Y¼

Y1,…,Ynð ÞΤ �ℝn stack the composite exposures, mediators, and out-

come across all subjects, respectively, ϵ¼ ϵ1,…,ϵnð ÞΤ �ℝn�p, with

ϵi ¼ εi1,…,εip
� �Τ �ℝp, and η¼ η1,…,ηnð ÞΤ �ℝn are measurement

errors. Suppose both error terms follow some zero mean

normal distribution, and e is independent of eX, η is independent of eX
and M, and ϵ and η are independent of each other. The parameters

α¼ αjk
� �

�ℝq�p, β¼ β1,…,βp
� �Τ �ℝp, and γ¼ γ1,…,γq

� �Τ �ℝq capture

the path effects. Model 1 is similar to that used in Zhao, Li, and

Caffo (2021) and Zhao and Luo (2022), but none of those can handle

multivariate exposure variables. Besides, we introduce some different

forms of penalty functions in our parameter estimation.

Figure 1 shows a schematic description of Model 1. Under this

model, we define the direct effect of eXj on Y as DE eXj

� �
¼ γj, the indirect

effect of eXj on Y through Mk as IE eXj ,Mk

� �
¼ αjkβk , and the total indi-

rect effect of eXj on Y as IE eXj

� �
¼Pp

k¼1αjkβk , for j¼1,…,q. The total

effect of eXj satisfies that TE eXj

� �
¼ IE eXj

� �
þDE eXj

� �
¼Pp

k¼1αjkβkþ γj.

A key characteristic of Model 1 is that it allows the multivariate medi-

ators to be conditionally dependent given the exposures. To better illus-

trate this, we consider a simple example of Model 1, where q¼1,p¼3, as

shown in Figure 2. In this example, Figure 2a outlines the sequential

influences among all the mediators, while Figure 2b is the proposed

Model 1. We see that, for the first mediator, M1, α11 ¼ a11,β1 ¼ b1; for

the second mediator, M2, α12 ¼ a11d12þa12,β2 ¼ b2; and for the third

mediator, M3, α13 ¼ a11d13þa11d12d23þa12d23þa13,β3 ¼ b3. As such,

α1k consolidates the effects through the kth mediator Mk , and the

indirect effect IE eX1,Mk

� �
¼ α1kβk can be viewed as the consolidated

indirect effect through Mk , k¼1,2,3.

3.2 | Estimation

We propose to estimate the parameters in Model 1 through the

penalized ordinary least squares,

minimize
α,β,γ

1
2
ℒ α,β,γð Þþλ1ℛ1 α,βð Þþ λ2ℛ2 α,βð Þþλ3ℛ3 γð Þ, ð2Þ

where the loss function is the usual least squares loss,
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ℒ α,β,γð Þ¼ tr M� eXα� �Τ
M� eXα� �� �

þ Y� eXγ�Mβ
� �Τ

Y� eXγ�Mβ
� �

:

ℛ1,ℛ2,ℛ3 are three penalty functions, with the tuning parame-

ters λ1,λ2,λ3, respectively. We next discuss each penalty function in

detail.

The first penalty functionℛ1 is of the form,

ℛ1 α,βð Þ¼
Xq
j¼1

Xp
k¼1

jαjkβkjþc0 α2jkþβ2k

� �n o
þc1

Xq
j¼1

Xp
k¼1

jαjkjþ
Xp
k¼1

jβkj
 !

,

for some parameters c0 and c1. It is a generalization of the pathway

Lasso penalty of Zhao and Luo (2022) to q exposure variables, and is

to facilitate selection of individual mediators. Specifically, for a

given mediator Mk , the term
Pq

j¼1 j αjkβk j is a product Lasso penalty,

and encourages all the paths going through Mk to be shrunk to zero,

which in effect achieves the goal of mediator selection. The term

c0 α2jk þβ2k

� �
is to make the penalty a convex function, with a

proper choice of the parameter c0. It is straightforward to show that,

when c0 ≥1=2, the sum j αjkβk j þc0 α2jk þβ2k

� �
is convex. In our imple-

mentation, we fix c0 ¼2. The last term in ℛ1 is the sum of usual Lasso

penalty that further penalizes individual path effects αjk ,βk , with c1

being an additional tuning parameter. It is found that this additional

penalty helps further improves the selection accuracy (Zhao &

Luo, 2022).

The second penalty function ℛ2 is of the form,

ℛ2 α,βð Þ¼
Xq
j¼1

ffiffiffi
p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
k¼1

αjkβk
� �2vuut :

It is a group Lasso penalty and is to facilitate the selection of indi-

vidual exposure. Specifically, for a given exposure eXj , the penaltyPp
k¼1 αjkβk
� �2n o1=2

encourages all the paths originating from eXj to be

F IGURE 1 The schematic diagram of
the proposed model with q exposure
variables eX1,…,eXq, p mediators M1,…,Mp,
and the outcome variable Y

F IGURE 2 A model example with q¼1 exposure variable and p¼3 sequentially ordered mediators
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shrunk to zero, which in effect achieves the goal of exposure

selection.

The third penalty functionℛ3 is of the form,

ℛ3 γð Þ¼
Xq
j¼1

j γj j :

This is simply the usual Lasso penalty and is to facilitate selection

of direct effects between the exposures and the outcome.

We next discuss how to solve the minimization problem (2). We

note that (2) involves the penalties on the product terms αjkβk , making

it difficult to derive the analytical solutions. As such, we first introduce

a new parameter, μjk ¼ αjkβk , which turns (2) to an equivalent problem

of solving a sparse group lasso that has an explicit form of solution

(Simon, Friedman, Hastie, & Tibshirani, 2013). That is, letting

μ¼ μjk
� �

�ℝq�p, we turn to the equivalent optimization problem,

minimize
α,β,γ,μ

1
2
ℒ α,β,γð Þþλ1ℛ1 μ,α,βð Þþλ2ℛ2 μð Þþλ3ℛ3 γð Þ,

suchthat μjk ¼ αjkβk , forj¼1,…,q and k¼1,…,p:
ð3Þ

Let μj ¼ μj1,…,μjp
� �Τ �ℝp, αj ¼ αj1,…,αjp

� �Τ �ℝp, and introduce the

augmented Lagrangian parameter τ j ¼ τj1,…,τjp
� �Τ �ℝp, for j¼1,…,q,

and τ¼ τjk
� �

�ℝq�p. Then, the augmented Lagrangian form of (3) is

minimize
α,β,γ,μ,τ

1
2
ℒ α,β,γð Þþλ1ℛ1 μ,α,βð Þþλ2ℛ2 μð Þþλ3ℛ3 γð Þ

þ
Xq
j¼1

⟨μj�αj ∘β,τ j⟩þ ρ

2
k μj�αj ∘βk22

� �
,

ð4Þ

where ρ>0 is the augmented Lagrangian constant that we set ρ¼1 in

our implementation, ∘ is the Hadamard product, ⟨ � , � ⟩ is the inner

product, and k �k2 is the L2-norm. We next solve (4) by updating

m,a,b,g and t iteratively.

More specifically, we first fix α sð Þ,β sð Þ,γ sð Þ,τ sð Þ at iteration s, and

update μj by solving

minimize
μj

ρ

2
k μj�α sð Þ

j ∘β sð Þk22þ τ sð ÞΤ
j μj�α sð Þ

j ∘β sð Þ
� �

þλ1 k μjk1þ λ2
ffiffiffi
p

p

k μjk2,

for j¼1,…,q, where k � k1 is the L1-norm. There is a closed-form

solution,

μ sþ1ð Þ
jk ¼ kS νj ,λ1=ρ

� �k2�λ2
ffiffiffi
p

p
=ρ

	 

þ

S νjk ,λ1=ρ
� �

kS νj,λ1=ρ
� �k2 , if kS νj,λ1=ρ

� �k2 ≠0,

0 otherwise,

0B@
ð5Þ

for j¼1,…,q, k¼1,…,p, where νj ¼α sð Þ
j ∘β sð Þ � τ sð Þ

j =ρ, S a,λð Þ¼
sgn að Þmax jaj�λ,0f g is the soft-thresholding function with sgn að Þ
denoting the sign of a and aþ ¼max a,0f g, and S a,λð Þ denotes the

element-wise soft-thresholding of a vector a.

We next fix m sþ1ð Þ,b sð Þ,g sð Þ,t sð Þ, and update aj by solving

minimize
aj

Vjαjþλ1c1sgn αj

� ��wj,

where Vj ¼ ρD2
β sð Þ þ 4λ1þexΤj exj� �

Ip, wj ¼ M�P l≠ jexlα sð ÞΤ
l

� �Τexj
þDβ sð Þ τ

sð Þ
j þρDβ sð Þμ

sþ1ð Þ
j , Db sð Þ is a diagonal matrix with β sð Þ as the diago-

nal elements, exj �ℝn is the jth column of eX, and Ip is the p-dimensional

identity matrix. The solution is

α sþ1ð Þ
j ¼V�1

j S wj ,λ1c1
� �

, j¼1,…,q: ð6Þ

We next fix μ sþ1ð Þ,α sþ1ð Þ,γ sð Þ,τ sð Þ, and update β by solving

minimize
β

Vββþλ1sgn βð Þ�wβ,

where Vβ ¼MΤMþρ
Pq

j¼1D
2
α sþ1ð Þ
j

þ4λ1qIp, wβ ¼MΤ Y� eXγ sð Þ
� �

þPq
j¼1Dα sþ1ð Þ

j
τ sð Þ
j þρ

Pq
j¼1Dα sþ1ð Þ

j
μ sþ1ð Þ
j , and D

α sþ1ð Þ
j

is a diagonal matrix

with α sþ1ð Þ
j as the diagonal elements. The solution is

β sþ1ð Þ ¼V�1
β S wβ,λ1c1

� �
: ð7Þ

We then fix μ sþ1ð Þ,α sþ1ð Þ,β sþ1ð Þ,τ sð Þ, and update g by solving

minimize
γ

Vγγþλ3sgn γð Þ�wγ,

where Vγ ¼ eXΤ eX and wγ ¼ eXΤ
Y�Mb sþ1ð Þ
� �

. The solution is

γ sþ1ð Þ ¼V�1
γ S wγ,λ3

� �
: ð8Þ

Finally, we fix μ sþ1ð Þ,α sþ1ð Þ,β sþ1ð Þ,γ sþ1ð Þ, and update τ by

τ sþ1ð Þ
j ¼ τ sð Þ

j þρ μ sþ1ð Þ
j �α sþ1ð Þ

j ∘β sþ1ð Þ
� �

, j¼1,…q: ð9Þ

We stop the iterations until some stopping criterion is met. In our

implement, we stop when the difference of two consecutive objective

values is smaller than 10�6. We summarize the above optimization

procedure in Algorithm 1.

We tune the parameters in (4) using the Bayesian information cri-

terion (BIC),

BIC¼�2logℒ ba,bb,bg� �
þ log nð Þ j bA j ,

where bα,bβ,bγ are the estimates under a given set of tuning parameters

λ1,λ2,λ3 and c1, A¼ j,kð Þ : αjkβk ≠0
	 


denotes the active set, and j A j
is the cardinality. In our implementation, we adopt the tuning strategy

of Zou and Hastie (2005), by tuning the ratios λ2=λ1,λ3=λ1 along with

c1 in a grid search, and choose the best set of parameters that mini-

mizes the BIC.
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4 | AD IMAGING PROTEOMICS STUDY
REVISITED

We apply the proposed method to the ADNI imaging proteomics

data, taking the CSF peptide measures as the exposures, the brain

volumetric measures as the mediators, and the memory score as

the outcome. Moreover, we adjust the exposures, mediators, and

outcome for age, gender, ApoE4, and years of education to remove

potential confounding effects (Rosenbaum, 2002). We first summa-

rize the identified paths with nonzero effects, then discuss the rel-

evant proteins and brain regions in detail. In summary, our findings

are consistent with the existing knowledge of AD. Moreover, our

method also suggests a few potentially interesting protein–struc-

ture–memory paths that may deserve further examination and

verification.

4.1 | Paths with nonzero effects

We first apply principal components analysis to the peptide data.

The top 20 principal components (PCs) account for about 85% of

total data variation. We thus focus on those q¼20 top PCs and feed

them as the exposure variables into the subsequent penalized path

analysis. Figure 3 presents all the identified paths with a nonzero indi-

rect path effect. Table 1 presents the estimated path effects including

the estimated α and β of each path, and Table 2 presents the indirect,

direct, and total effect of each exposure PC.

4.2 | Proteins

Among the 20 PCs, seven have nonzero indirect effects on mem-

ory. Next, we focus on PC1, PC4, and PC5 as they account for a

higher proportion of total data variation and demonstrate a

relatively higher indirect path effect on the outcome. To better

interpret the PCs, the loading profiles are sparsified following the

sparse PCA approach (Zou, Hastie, & Tibshirani, 2006). The fused

lasso regularization (Tibshirani, Saunders, Rosset, Zhu, &

Knight, 2005) is considered to impose local consistency and

smoothness within the same protein. Table 3 lists the top pro-

teins in PC1, PC4, and PC5, and the corresponding gene name.

We also include the regulation directions found in the AD litera-

ture, where an upregulation compared to cognitive normal con-

trols indicates a higher protein abundance in MCI/AD patients,

as well as the direction of correlations with the CSF amyloid-β

and tau, the two well-established AD protein biomarkers

(Wesenhagen, Teunissen, Visser, & Tijms, 2020). We next discuss the

identified proteins by their relevance in the amyloid-β and tau

pathology.

4.2.1 | Proteins related to amyloid pathology

Among the top-loaded proteins, SPON1, SORCS1, PTGDS, CST3,

NPTX2, VGF, and CHGA have been found to be related to

amyloid-β pathology in AD. The accumulation of amyloid-β is gener-

ally considered a hallmark of AD, which is derived from the amyloid

precursor protein (APP) through sequential cleavages by beta-site

amyloid precursor protein cleaving enzyme 1 (BACE1) and γ-secretase

(Vassar et al., 1999). Blocking BACE1 can potentially reduce the abun-

dance in amyloid-β, however, this may prohibit the other functions of

BACE1 in psychological activities. For SPON1, using an in vivo AD

mouse model, it was found that, by injecting SPON1, the amount of

amyloid-β was significantly reduced, and subsequently, the amelio-

rated cognitive dysfunction and memory impairment were improved,

suggesting SPON1 to be a potential AD therapy target (Park

et al., 2020). Interacting with APOE, human SPON1 suppresses

amyloid-β level through the APP transgene, and has an impact on

working memory performance through the activation of the triangular

part of the right inferior frontal gyrus (Liu et al., 2018). For NPTX1

and NPTX2, both belong to the family of long neuronal pentraxins.

Together with NPTXR, they bind AMPA type glutamate receptors and

contribute to multiple forms of developmental and adult synaptic plas-

ticity. Using an AD mouse model, reduction in NPTX2 together with

amyloidosis was found to induce a synergistic reduction of inhibitory

circuit function. In AD subjects, the level of NTPX2 was found to be

related to hippocampal volume, as well as cognitive decline (Xiao

et al., 2017). For CST3, cysteine proteases, including cathepsin B

(CatB), is a recently discovered amyloid-β-degrading enzyme. Using a

mouse model, CST3 was discovered to be a key inhibitor of CatB-

induced amyloid-β degradation in vivo. Genetic ablation of CST3 sig-

nificantly reduced soluble amyloid-β levels, and attenuated associated

cognitive deficits and behavioral abnormalities, and restored synaptic

plasticity in hippocampus (Sun et al., 2008). For VGF, through a mouse

model, over-expression of neuropeptides precursor VGF was found to

partially rescue amyloid-β-mediated memory impairment and neuro-

pathology, suggesting a possible causal role of VGF in protecting

Algorithm The optimization algorithm for (4)

Input: eX,M,Y
� �

and the tuning parameters λ1,λ2,λ3 and c1

1: initialization: α 0ð Þ,β 0ð Þ,γ 0ð Þ,μ 0ð Þ,τ 0ð Þ
n o

2: repeat

3: update μ sþ1ð Þ
jk given α sð Þ,β sð Þ,γ sð Þ,τ sð Þ by (5),

for j¼1,…,q,k¼1,…,p

4: update α sþ1ð Þ
j given μ sþ1ð Þ,β sð Þ,γ sð Þ,τ sð Þ by (6),

for j¼1,…,q

5: update β sþ1ð Þ given μ sþ1ð Þ,α sþ1ð Þ,γ sð Þ,τ sð Þ by (7)

6: update γ sþ1ð Þ given μ sþ1ð Þ,α sþ1ð Þ,β sþ1ð Þ,τ sð Þ by (8)

7: update τ sþ1ð Þ
j given μ sþ1ð Þ,α sþ1ð Þ,β sþ1ð Þ,γ sþ1ð Þ by (9),

for j¼1,…,q

8: until the stopping criterion is met

Output: bα,bβ,bγn o
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against AD pathogenesis and progression (Beckmann et al., 2020). For

SORCS1, through a meta-analysis of 16 SORCS1-single nucleotide

polymorphisms (SNPs) in six independent datasets, it was found that

over-expression of SORCS1 can reduce γ-secretase activity and

amyloid-β levels, and the suppression of SORCS1 can increase

γ-secretase processing of APP and the levels of amyloid-β (Reitz

et al., 2011). For PTGDS, it is one of the most abundant proteins in

the CSF, which binds and transports small lipophilic molecules such as

amyloid-β, and thus has been considered as the endogenous amyloid-

β chaperone (Kanekiyo et al., 2007), and is believed to play an impor-

tant role in AD development. For CHGA, compared to the normal con-

trols, the level of CHGA was significantly higher in the CSF of patients

with MCI, especially with MCI progressing to AD (Duits et al., 2018).

CHGA is the major soluble protein in catecholamine storage vesicles,

abnormalities of which may play a central role in memory deficits in

AD. Elevation of CHGA was observed in AD brains, and was believed

to play a role in amyloid-β pathology (Mattsson et al., 2013; O'Connor,

Kailasam, & Thal, 1993). It has also been found that CHGA is nega-

tively associated with hippocampal and entorhinal volume (Khan

et al., 2015).

4.2.2 | Proteins related to tau pathology

For IGFBP2, it is an abundant cerebral insulin-like growth factor sig-

naling protein associated with the AD biomarkers. In both AD mouse

models and AD patients, IGFBP2 was observed to be associated with

CSF tau levels and brain atrophy in nonhippocampal regions,

suggesting that it is relevant in neurodegeneration through tau pathol-

ogy (Bonham et al., 2018).

F IGURE 3 The estimated paths for the AD imaging proteomics study. The red nodes denote the principal components of the peptides as
exposures, the green nodes the brain regions as mediators, and the blue node the memory score as outcome. The red arrows indicate positive
path effects, and the blue arrows negative path effects
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TABLE 1 Brain regions with nonzero indirect effect (IE¼ αβ) in the AD imaging proteomics study

Brain regions as mediators

Principal components of peptides as exposures

β (�10�2)PC1 PC2 PC4 PC5 PC7 PC9 PC19

R41 Left cerebellum white matter α �0.17

IE (�10�3) �1.30 0.76

R47 Right hippocampus α 0.11 0.13 0.13

IE (�10�3) 1.12 1.60 1.52 1.17

R48 Left hippocampus α 0.11 0.13 0.13 0.22 0.12

IE (�10�3) 1.34 1.59 1.76 3.40 1.55 1.20

R49 Temporal horn of right lateral ventricle α �0.25 0.15 �0.26 �0.18 �0.16

IE (�10�3) 2.06 �1.01 2.03 1.28 1.08 �0.66

R50 Temporal horn of left lateral ventricle α �0.29 �0.23 �0.25 �0.21

IE (�10�3) 2.55 1.78 2.05 1.74 �0.71

R51 Right lateral ventricle α �0.36

IE (�10�3) 1.06 �0.30

R52 Left lateral ventricle α �0.36

IE (�10�3) 1.15 �0.27

R73 Cerebellar vermal lobules VIII-X α 0.14

IE (�10�3) 1.88 1.00

R103 Left anterior insula α �0.17 0.20 0.25

IE (�10�3) �1.13 1.27 1.76 0.56

R106 Right angular gyrus α 0.15 �0.18

IE (�10�3) 1.03 �1.41 0.78

R117 Left entorhinal areas α 0.17

IE (�10�3) 1.15 0.76

R120 Right frontal pole α 0.16

IE (�10�3) 1.12 0.75

R121 Left frontal pole α �0.16

IE (�10�3) �1.12 0.77

R122 Right fusiform gyrus α 0.16

IE (�10�3) 1.32 1.02

R123 Left fusiform gyrus α 0.19

IE (�10�3) 1.12 0.66

R154 Right middle temporal gyrus α 0.21 0.19

IE (�10�3) 1.68 1.66 0.74

R155 Left middle temporal gyrus α 0.13 0.14 0.18 0.14 0.15

IE (�10�3) 1.01 1.09 1.63 1.05 1.35 0.79

R169 Left precuneus α 0.15

IE (�10�3) 1.10 0.82

R172 Right posterior insula α 0.13 �0.12 0.22 0.11 0.11

IE (�10�3) 1.44 �1.30 2.67 1.03 1.00 1.03

R173 Left posterior insula α �0.17 0.24 0.15

IE (�10�3) �1.46 2.18 1.09 0.82

R182 Right precentral gyrus α �0.24

IE (�10�3) 1.91 �0.51
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4.2.3 | Proteins related to both amyloid and tau
pathology

There was evidence showing that proteins KLK6 and SOD1 were rele-

vant in both amyloid and tau pathology. For SOD1, using an APP-

overexpressing mouse model, SOD1 deficiency was found to acceler-

ate amyloid-β oligomerization, induce tau phosphorylation and lower

levels of synaptophysin, and consequently memory impairment

(Murakami et al., 2011). Kallikrein-related peptidases (KLKs) represent

the largest family of secreted serine proteases. Human KLK6 is the

TABLE 2 The estimated indirect effects (IE), direct effects (DE), and total effects (TE) of the top principal components

PC1 PC2 PC4 PC5 PC6 PC7 PC9 PC11 PC14 PC15 PC16 PC19 Total

IE 0.013 �0.003 0.018 0.012 0.008 0.007 �0.001 0.054

DE 0.138 0.066 �0.035 0.168 0.065 �0.018 0.102 �0.007 0.156 0.634

TE 0.151 �0.003 0.018 0.078 �0.035 0.176 0.072 �0.018 0.102 �0.007 0.156 �0.001 0.688

Note: The PCs with zero IE and DE are not presented in the table.

TABLE 3 Proteins with top loading magnitude in PC1, PC4, and PC5

Protein Loading Gene Direction

Correlation

tau amyloid

PC1

Neuroblastoma suppressor of tumorigenicity 1 0.283 NBL1 "
Spondin-1 0.160 SPON1 " " #
VPS10 domain-containing receptor SorCS1 0.152 SORCS1 " #
ProSAAS 0.116 PCSK1N ⇕

Prostagiandin-H2 D-isomerase 0.110 PTGDS # #
Neuronal growth regulator 1 0.110 NEGR1 #
Monocyte differentiation antigen CD14 0.109 CD14 "
Cell adhesion molecule 3 0.103 CADM3 #
PC4

Beta-2-microglobulin �0.252 B2M ⇕ #
Neuronal pentraxin-2 0.190 NPTX2 # "
Insulin-like growth factor-binding protein 2 �0.147 IGFBP2 ⇕ "
Neuronal pentraxin-1 0.137 NPTX1 #
Kallikrein-6 �0.129 KLK6 " " "
Apolipoprotein D �0.121 APOD ⇕ "
Neurexin-2 0.117 NRXN2 ⇕

Cystatin-C �0.116 CST3 ⇕ ⇕ "
PC5

Superoxide dismutase (Cu-Zn) 0.236 SOD1 # " #
Neurosecretory protein VGF 0.195 VGF # #
Ectonucleotide pyrophosphatase/phosphodiesterase

family member 2

�0.152 ENPP2 " #

Complement C4-A �0.152 C4A "
Complement factor B 0.121 CFB "
Glial fibrillary acidic protein �0.120 GFAP "
Mimecan �0.105 OGN ⇕

Chromogranin-A 0.103 CHGA ⇕ " "
Alpha-1B-glycoprotein 0.102 A1BG ⇕

Note: For each protein, direction of protein level in MCI/AD compared to normal control and correlation with CSF tau and amyloid reported in the

literature are provided. ", consistently upregulated in MCI/AD or positively correlated; #, consistently downregulated in MCI/AD or negatively correlated;

⇕ , inconsistent reports.
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most abundant KLKs in the spinal cord, brain stem, cerebral cortex

including the hippocampus and thalamus. It has been found that KLK6

cleaves APP and mediates cleavage of laminin and collagen, which has

implications for APP processing and amyloid-β mediated neurotoxicity

(Angelo et al., 2006; Small, Nurcombe, Clarris, Beyreuther, &

Masters, 1993). In AD patients, the level of KLK6 in CSF is signifi-

cantly elevated and is associated with levels of CSF tau suggesting a

potential marker of tau pathology (Goldhardt et al., 2019).

4.2.4 | Other AD-related proteins

NRXN2 is another protein marker that was found to be up-regulated

among MCI patients, especially with MCI progression to AD (Duits

et al., 2018). APOD was found to be elevated in the prefrontal cortex

associated with cognitive decline (Thomas et al., 2003). GFAP immu-

nohistochemistry is a marker to assess the oxidative stress and glial

cell activation expressed in astrocytes. Focusing on the human ento-

rhinal cortex and hippocampus, the GFAP expression was observed in

the hippocampus of AD patients (Hol et al., 2003). B2M is a compo-

nent of major histocompatibility complex class 1 molecules. Increased

soluble B2M has been discovered in the CSF of patients with AD, and

was associated with cognitive decline (Carrette et al., 2003). Using

mouse models, elevated B2M was observed in the hippocampus of

aged mice. Injecting exogenous B2M locally in the hippocampus,

impaired hippocampal-dependent cognitive function and neuro-

genesis were observed in young mice. The findings suggest that the

accumulation of B2M increases the risk of age-related cognitive dys-

function and neurogenesis impairment (Smith et al., 2015).

4.2.5 | Proteins related to brain structure/atrophy

NEGR1 is a member of the immunoglobulin superfamily of cell adhe-

sion molecules, and is involved in cortical layering. Using a

NEGR1-targeted mouse model, brain morphological analysis revealed

NEGR1-related neuroanatomical abnormalities, including enlargement

of ventricles and decrease in the volume of the whole brain, corpus

callosum, globus pallidus, and hippocampus (Singh et al., 2019). CST3

was discovered to be related to a higher hippocampal atrophy rate

(Paterson et al., 2014), and atrophy in the entorhinal cortex (Mattsson

et al., 2014). APOD and NPTX2 were found to be related to medial

temporal lobe atrophy (Mattsson et al., 2014; Swanson et al., 2016).

4.3 | Brain regions

While Table 1 lists the brain regions with nonzero path effects

induced by PC1, PC4, and PC5, Figure 4 visualizes those regions on a

template brain. The identified brain regions include the hippocampus,

the entorhinal cortex, cortical regions on the temporal, parietal and

frontal lobes, the lateral ventricles, and the cerebellum. Brain struc-

tural atrophy occurs early in the medial temporal lobe, including the

hippocampus and entorhinal cortex, then extends soon after to the

rest of the cortical areas, usually following a temporal, parietal, frontal

trajectory, whereas the motor areas are affected toward late stages.

(Pini et al., 2016). We next discuss those identified brain regions

roughly following this trajectory.

4.3.1 | The hippocampus and entorhinal cortex

The hippocampus is a major component of the human brain located in

the medial temporal lobe, and is functionally involved in response inhi-

bition, episodic memory, and spatial cognition. Hippocampal atrophy

is the best established and validated biomarker across the entire dis-

ease spectrum (Jack Jr et al., 2011). The entorhinal cortex also locates

in the medial temporal lobe. It connects the neocortex and the hippo-

campus that receives information from the neocortex and projects to

the hippocampus through the perforant pathway (Insausti, Tunon,

Sobreviela, Insausti, & Gonzalo, 1995). It has been consistently

reported that, compared to the healthy controls, entorhinal atrophy

was observed in the MCI patients, and more severe atrophy in the AD

patients (Pini et al., 2016). The hippocampus and entorhinal cortex, as

well as the anatomically related parahippocampal and perirhinal corti-

ces, are parts of the medial temporal lobe memory system. Impair-

ments of this system are responsible for the deficit in episodic

memory, and are early hallmark of AD (Nadel & Hardt, 2011).

4.3.2 | The lateral temporal, parietal, and frontal
cortex

The gray matter loss in the lateral temporal cortex, dorsal parietal, parietal

angular and frontal cortex occurs during the progression from incipient to

mild AD. During this period, cognitive deficits have been observed in

both memory and nonmemory domains, including language, visuo-spatial

and executive function (Frisoni, Prestia, Rasser, Bonetti, &

Thompson, 2009). Moreover, a higher amount of tau deposition has been

observed in the middle temporal cortex, fusiform gyrus, and entorhinal

cortex (Schultz et al., 2018). The fusiform gyrus is critical in facial recogni-

tion. Alterations of gene expression specific to the fusiform gyrus were

discovered in AD patients (Ma et al., 2020). The left middle temporal

gyrus is related to the recognition of known faces and accessing word

meaning while reading (Acheson & Hagoort, 2013). The precuneus, a hub

of the default mode network, has been found to be related to episodic

memories (Sadigh-Eteghad, Majdi, Farhoudi, Talebi, & Mahmoudi, 2014).

Atrophy in the entorhinal cortex, fusiform, middle temporal gyrus,

precuneus, and precentral has been noted in AD (Parker et al., 2018). The

association between atrophy in the insular cortex and memory deficits in

AD has been reported too (Lin et al., 2017).

4.3.3 | The lateral ventricles

The ventricles are one of the interests in brain atrophy research as the

volumetric measurement is robust to automatic segmentation due to

the sharp contrast between the CSF in the ventricles and surrounding
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tissue in T1-weighted images. Thus, as a complement metric of hemi-

spheric atrophy rates, enlargement in the lateral ventricles is an impor-

tant marker of AD progression (Kruthika et al., 2019).

4.3.4 | The cerebellum

The cerebellum is involved in cognition and emotion and communi-

cates with cerebral cortices in a topographically organized manner.

Based on existing evidence of cerebellar modulation of cognition and

emotion, it was hypothesized that there exists cerebellar contribution

to the cognitive and neuropsychiatric deficits in AD. However, more

research is required to validate the hypothesis and to understand

cerebrocerebellar interactions in AD pathology (Jacobs et al., 2018).

5 | SIMULATION STUDY

We complement our data analysis with some additional simulation

studies to further examine the empirical performance of the proposed

method.

We generate Xi �ℝr (i¼1,…,n) from a multivariate normal distri-

bution with mean zero and a covariance matrix whose eigenvalues

exponentially decay. After applying PCA, we obtain eX�ℝn�q, where q

is chosen such that the top q PCs account for over 80% of total data

variation. We then generate M and Y following Model 1 given eX. We

set 5% of the path effects to be nonzero. We consider two sets of

data dimension, r¼100, p¼100, and r¼350, p¼150, the latter of

which has a similar data dimension as in the ADNI dataset. We also

consider three sample sizes, n¼100,500,1000. We compare the pro-

posed approach with an approach based on the univariate mediation

analysis (Imai, Keele, & Tingley, 2010). After the PCs are obtained, uni-

variate mediation analysis is performed for each mediator and each

exposure PC and finish with a p-value correction (Benjamini &

Hochberg, 1995).

Table 4 presents the estimated total indirect effects and the indi-

rect effects of the top six PCs, and Table 5 presents the estimated

number of PCs and the sensitivity and specificity of the identified

nonzero path effects. Among all cases, the estimated number of PCs

is 6, which agrees with the truth. From the tables, we observe that

the proposed method achieves a competitive performance, and the

performance improves, with a lower estimation error and a higher

F IGURE 4 Brain regions with a nonzero mediation effect in (a) PC1, (b) PC4, and (c) PC5
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selection accuracy, as the sample size increases. For the univariate-

based approach (UniMed), the performance in estimating the effects

does not improve as the sample size increases and the power of iden-

tifying nonzero mediation effects is much lower.

6 | DISCUSSION

In this study, we propose a mediation framework with high-

dimensional exposures and high-dimensional mediators. The frame-

work integrates the PCA with marginal linear SEMs, where the PCA

leads to multiple independent exposures and the marginal SEMs allow

the mediators to be dependent. A regularization combining the Group

Lasso and the Pathway Lasso is considered to achieve simultaneous

exposure and mediator selection. Through simulation studies, the pro-

posed approach yields competitive estimation performance and selec-

tion accuracy. The proposed framework is applied to integrate the

CSF proteomics data, the brain volumetric data, and a memory mea-

surement acquired from MCI subjects in ADNI. Several protein–imag-

ing–memory pathways are identified, which are in accordance with

existing knowledge about AD.

The proposed framework is among the first attempts to conduct

mediation analysis where both the exposure and mediator are high

dimensional. It also fits in the context of integrating multiview data. In

this study, pathology of deficits in memory among MCI patients

induced by CSF protein deposition and mediated by brain atrophy is

articulated. Integrating proteomics with neuroimaging data on a large

scale is not commonly seen in the existing literature. One can apply

the proposed approach to integrate other types of data under mecha-

nistic and causal assumptions (Data S1, Supporting Information). For

example, in an imaging-genetics study, the genetic/genomic data are

the exposures and the neuroimaging data are the mediators. Another

example is to integrate multimodal neuroimaging data with the struc-

tural imaging data as the exposures and the functional imaging data as

the mediators based on Hebb's law (Hebb, 2005). Another direction

of application is in a longitudinal study, where imaging (or omics) data

collected at two (consecutive) time points can be considered as the

exposures and mediators, respectively, and a phenotyping measure-

ment at the end of study is the outcome. The temporal ordering in the

measurements intrinsically infers the causality.

In order to account for the dependence between the exposures,

the PCA is employed. It not only rotates the exposures into indepen-

dent components, but also significantly reduces the data dimension.

However, one drawback of PCA is that the loadings are not sign iden-

tifiable. Thus, both the estimated indirect and direct effect are sign

sensitive. In the analysis, we keep the highest loading in each compo-

nent to be positive.

The current study focuses on selecting exposures and their

induced mediation pathways and estimating the indirect/direct

effects. Post-selection inference is also an important question. We

leave the study of drawing statistical inference to future research. In

the current study, PCA is considered as an initial step to decorrelate

the exposures. A next step will be merging this decomposition into

the mediation optimization.
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